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ABSTRACT

The industry-standard surface-related multiple elimination
(SRME) method provides an approximate predictor of the am-
plitude and phase of free-surface multiples. This approximate
predictor then calls upon an energy-minimization adaptive sub-
traction step to bridge the difference between the SRME pre-
diction and the actual free-surface multiple. For free-surface
multiples that are proximal to other events, the criteria behind
energy-minimization adaptive subtraction can be invalid. When
applied under these circumstances, a proximal primary can often
be damaged. To reduce the dependence on the adaptive process,
a more accurate free-surface multiple prediction is required. The
inverse scattering series (ISS) free-surface multiple elimination

(FSME) method predicts free-surface multiples with accurate
time and accurate amplitude of free-surface multiples for a
multidimensional earth, directly and without any subsurface
information. To quantify these differences, a comparison with
analytic data was carried out, confirming that when a free-
surface multiple interferes with a primary, applying SRME with
adaptive subtraction can and will damage the primary, whereas
ISS free-surface elimination will precisely remove the free-
surface multiple without damaging the interfering primary.
On the other hand, if the free-surface multiple is isolated, then
SRME with adaptive subtraction can be a cost-effective toolbox
choice. SRME and ISS FSME each have an important and dis-
tinct role to play in the seismic toolbox, and each method is the
indicated choice under different circumstances.

INTRODUCTION

In the beginning of the paper, it is useful to remind ourselves
of the definitions of seismic events based on their travel histories
(Weglein et al., 2003). For instance, Figure 1 shows different types
of seismic events in marine seismic exploration. In marine seismic
exploration, reference waves are first defined as waves that travel
directly from source to receiver and waves that first travel up to the
air-water boundary and then to the receiver. These two types of
waves did not experience the subsurface. All other events have ex-
perienced the subsurface. Then, among the waves that did experi-
ence the subsurface, ghost events are defined as the seismic events
that begin their propagation histories by traveling up from the
source to the air-water boundary (source ghosts) or end their his-
tories by traveling down from the air-water boundary to the receiver

(receiver ghosts) or both (source and receiver ghosts). After that,
events that begin their history going downward from the source
and end their history upward at the receiver are divided into primary
and multiple events. Primary events are defined as the events that
experience only one upward reflection during their propagation
history, whereas multiple events are defined as the events that
experience multiple reflections during their propagation history.
Multiple events are further divided into free-surface multiples
and internal multiples depending on the location of downward re-
flection between two consecutive upward reflections.
Multiples that have at least one downward reflection at the air-

water (for offshore exploration) or air-land (for onshore exploration)
surface are called free-surface multiples, whereas multiples that
have all of their downward reflections below the air-water or air-
land surface are called internal multiples (Weglein et al., 1997).
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The order of a free-surface multiple is defined as the number of
reflections it has experienced only at the air-water or air-land sur-
face. In contrast, the order of an internal multiple is defined by the
total number of downward reflections below the air-water or air-
land surface. These definitions of different event types define a se-
quence of processing steps.
In principle, only primaries are called upon to determine the

structure and to identify subsurface properties (Weglein, 2016,
2018b). To obtain a data set consisting of primaries, all other events
need to be predicted and removed. Hence, multiples, along with the
reference waves, source ghosts, receiver ghosts, and source-and-
receiver ghosts, all need to be predicted and removed from the seis-
mic data to obtain the primary-only input to imaging and inversion
methods (Weglein, 2018a). There are two types of primaries and
multiples: recorded primaries and multiples and unrecorded primar-
ies and multiples. Recorded multiples can be used to provide an
approximate image of an unrecorded primary. Unrecorded multiples
must be removed to use a recorded multiple to find an approximate
image of an unrecorded primary. Currently, in the petroleum indus-
try, smooth velocity models are used to locate structure and perform
amplitude analysis. For a smooth velocity model, multiples will al-
ways produce imaging artifacts. Therefore, multiples (recorded and
unrecorded) need to be removed first from the reflection data before
imaging primaries for processing goals that seek to effectively lo-
cate and invert reflections. This paper will confine itself to removing
recorded free-surface multiples.
Removing and using multiples are seeking the images of primar-

ies: recorded primaries and unrecorded primaries. As pointed out by
Weglein (2018b), the relationship between “removing multiples”
and “using multiples” is not adversarial but complementary. This
paper belongs to the study of the methods in removing multiples.
The methods for removing multiples have advanced and have

become more effective. However, the concomitant industry trend
toward ever more complex exploration areas and difficult plays
has at times outpaced advances in multiple-attenuation capability.
For example, currently, the removal of multiples, especially those
that are interfering with primaries, for an unknown and complex
multidimensional subsurface, remains a key open issue and is a
high-priority challenge for offshore and onshore conventional and
unconventional plays. We advocate a toolbox approach, in general,
and we seek to understand the place and role that each method
within the toolbox plays within the spectrum of different capabil-
ities and responses and how to choose the method that’s the best
match for the user’s specific application and objective. We also ad-
vocate adding new options to the toolbox to increase the collection
of circumstances that can be addressed.

In this particular paper, we examine and compare two methods
(i.e., inverse scattering series free-surface multiple elimination
[ISS FSME] [Carvalho et al., 1991; Weglein et al., 1997, 2003] and
surface-related multiple elimination [SRME]) (Berkhout, 1985;
Verschuur, 1991; Verschuur et al., 1992) for the removal of free-
surface multiples. We suggest a guide to when each can be the ap-
propriate choice within the free-surface-multiple-removal toolbox.
The SRME method has been widely used and has become (and we
expect will remain) the workhorse and industry standard for remov-
ing free-surface multiples. Similarly, the effectiveness of ISS FSME
has been demonstrated in many complicated synthetic and field
data tests (e.g., Carvalho and Weglein, 1994; Matson et al., 1999;
Weglein and Dragoset, 2005; Zhang, 2007; Ferreira, 2011).
These free-surface multiple removal methods share a property

that both methods do not require subsurface information. However,
there are significant and well-documented differences between
these two methods as discussed by Weglein et al. (2000) and
Weglein and Dragoset (2005). For example, one difference is the
SRME method predicts the approximate amplitude and time of
free-surface multiples. In contrast, the ISS FSME method predicts
free-surface multiples with accurate amplitude and accurate time.
There are circumstances in which that difference will be significant
and important for removing free-surface multiples without damag-
ing interfering or proximal primaries. The ISS FSME method is
more effective and more computationally demanding compared
to SRME. There are circumstances in which the added cost is in-
dicated, and other cases in which the lower cost SRME will be the
cost-effective choice.
Our aim and single objective is to use examples in 1D with ana-

lytic input data to provide a quantitative analysis between two meth-
ods in terms of predicting free-surface multiples and removing
interfering free-surface multiples without damaging primaries.
The outline of the paper is as follows: We first describe ISS free-
surface multiple prediction and SRME free-surface multiple pre-
diction. We examine the difference in physics theory that resides
behind the different ISS FSME and SRME predictions. After that,
we use 1D prestack examples for a quantitative comparison of free-
surface multiple prediction between the ISS FSME and SRME
methods. We conclude with a discussion and guide for the indicated
toolbox choices.

THE ISS FSME ALGORITHM

In this section, we describe the ISS FSME algorithm (Carvalho
et al., 1991; Weglein et al., 1997, 2003). We start by first describing
the preprocessing steps before ISS FSME and then describing ISS
free-surface multiple prediction.
We provide a 2D marine development as an example to illu-

strate the steps. Given the recorded seismic data (see Figure 1),
Dðxg; xs; tÞ, where xg; xs and t represent the receiver and source
locations and time, respectively. (1) The first step is to remove
the reference waves. (2) After the removal of the reference wave
(producing reflection data), the second step is to remove source
ghosts, receiver ghosts, and source-and-receiver ghosts that produce
deghosted reflection data. (3) After the removal of reference waves
and all ghosts (i.e., source ghosts, receiver ghosts, and source-
and-receiver ghosts), deghosted seismic reflection data (represented
by D 0

1ðxg; xs; tÞ) enter the ISS FSME to predict and remove free-
surface multiples as follows:

Figure 1. Illustration of different seismic events in the marine envi-
ronment. Solid yellow line, reference waves; dashed green and
light-blue line, source ghost and receiver ghost, respectively; dashed
dark-blue line, free-surface multiple; dashed orange line, internal
multiple; and solid black line, primary.
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• D 0
1ðxg; xs; tÞ is the first Fourier transformed over xg; xs; t

(i.e., D 0
1ðxg; xs; tÞ → D 0

1ðkg; ks;ωÞ; see equation A-25 for
the Fourier transform convention).

• The Fourier-transformed data, D 0
1ðkg; ks;ωÞ enter the ISS

free-surface-multiple-prediction equations (i.e., equation 1)
to predict free-surface multiples (represented byD 0

nðkg; ks;ωÞ,
where n ¼ 2; 3; 4; : : : ) with accurate time and accurate ampli-
tude (in opposite polarity compared with actual free-surface
multiples), of order n − 1,

D 0
nðkg; ks;ωÞ ¼ −

1

2πAðωÞ
Z

dkeiqðzgþzsÞ

×D 0
1ðkg; k;ωÞð2iqÞD 0

n−1ðk; ks;ωÞ;
n ¼ 2; 3; 4; : : : : (1)

The quantities AðωÞ, zg, and zs in equation 1 are the source
signature, receiver depth, and source depth, respectively,
and q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2∕c0 − k2

p
.

• Then, these predicted ðn − 1Þth order free-surface multiples
(D 0

nðkg; ks;ωÞ, where n ¼ 2; 3; 4; : : : ) are inverse Fourier
transformed back to xg; xs and t and added to the input data
D 0

1ðxg; xs; tÞ to obtain data without free-surface multiples
(see equation 2).

D 0ðxg; xs; tÞ ¼ D 0
1ðxg; xs; tÞ þD 0

2ðxg; xs; tÞ
þD 0

3ðxg; xs; tÞþ · · · ;

¼
X∞
n¼1

D 0
nðxg; xs; tÞ: (2)

It should be mentioned that the subsequent prediction terms
in the series (equation 2), represented by D 0

2; D
0
3; ::., provide

predictions of free-surface multiples of different orders.
Specifically, each term in D 0

n (where n ¼ 2; 3; 4; ::.) when
added to the earlier terms in the series (including the data
D 0

1) performs two functions: (1) It eliminates the nth-order
free-surface multiple, and (2) it alters all
higher-order free-surface multiples to be
prepared for their removal by higher order
D 0

j terms, where j ¼ nþ 1; nþ 2; ::.
(Weglein et al., 2003; Zhang and Shaw,
2010; Ma and Weglein, 2016). The output
of the ISS FSME D 0ðxg; xs; tÞ represents
the data without reference waves, without
all ghosts, and without free-surface
multiples.

SRME

The 2D SRME free-surface multiple predic-
tion, denoted by M (Berkhout, 1985; Verschuur,
1991; Verschuur et al., 1992), is calculated by
using seismic data without reference waves and
receiver-side ghosts, but retaining source-side
ghosts, denoted by P, as follows:

Mðxg; xs;ωÞ ¼
Z

Pðxg; x;ωÞPðx; xs;ωÞdx; (3)

where xg; xs;ω are the receiver and source locations and temporal
frequency, respectively. To obtain equation 3, one would have to
assume in the physics derivation that the data were generated by
a vertically separated dipole source in the water column (with the
reference wave and source and receiver ghosts removed [see the
details in Appendix B]). The actual monopole source itself together
with its source ghost (corresponding to a mirror image [in the air
above the sea surface] of the actual monopole source in the water) is
assumed in the SRME prediction step to be an approximation to the
dipole source in the water column.
The physics theory differences between these two free-surface

multiple-prediction algorithms are studied in Appendices A and B.
In the next section, we focus on a quantitative comparison between
the ISS and SRME free-surface multiple predictions.

A QUANTITATIVE COMPARISON BETWEEN THE
ISS AND SRME FREE-SURFACE MULTIPLE

PREDICTIONS

In this section, we aim to provide a quantitative comparison be-
tween ISS free-surface multiple prediction and SRME free-surface
multiple prediction.
From the last section, we know that the called-for input data to the

two free-surface multiple-prediction algorithms are different. The in-
put seismic data for the ISS FSME algorithm are generated by a mo-
nopole source with the reference wave and all ghosts removed (see
Figure 2). For SRME, the input is seismic data generated by a dipole
source with the reference wave and ghosts removed. However, in prac-
tice, because the data due to a vertically separated dipole source are not
realizable, the assumption made within SRME is to approximate what
a dipole source in the water would produce by a monopole source and
its source-side ghost (in the air).
Following that, in the first set of comparisons (see the first

bullet in Figure 3), we provide different called-for inputs to these

Figure 2. The ISS free-surface multiple prediction algorithm and the SRME free-
surface multiple prediction algorithm.
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two free-surface multiple-prediction algorithms. For the ISS free-
surface multiple-prediction algorithm, we use data due to a mono-
pole source with the reference wave and all ghosts removed.
Similarly, for the SRME free-surface multiple-prediction algorithm,
we use data due to a monopole source with the reference wave and
the receiver-side ghosts removed (source-side ghosts are retained in
the data).
Ghosts can have a detrimental effect on seismic bandwidth and

resolution. Therefore, in practice, source and receiver ghosts are
often removed early in the processing chain prior to multiple re-
moval processing taking place. Hence, we carry out the second
set of comparisons with input data with the reference wave and
all ghosts removed for both algorithms. The latter tests are carried
out with and without noise (see the second and third bullets in
Figure 3).
In the third set of comparisons, we repeat the previous compari-

son, with input data generated by an absorptive medium (see the
fourth bullet in Figure 3). We aim to examine whether, for input
data generated by an absorptive medium, the two free-surface multi-
ple-prediction algorithms retain their relative and different levels
of effectiveness; i.e., the ISS predicts free-surface multiples with
accurate amplitude and time, and the SRME predicts free-surface
multiples with approximate amplitude and approximate time in
the presence of an absorptive medium.
Weglein et al. (2003, pp. R52–R55) provide proof that the ISS

FSME method predicts the precise time and amplitude of all free-
surface multiples, without any subsurface information and is inde-
pendent of the earth model type. Similarly, Weglein et al. (2003,
pp. R55–R62) also show that the ISS internal multiple attenuator
predicts the precise time and approximate amplitude of all internal
multiples, without subsurface information and is independent of the
earth model type.

The first set of comparisons

In this first set of comparisons, given the required input of these
two free-surface multiples algorithms, we provide a quantitative
comparison of the predicted free-surface multiples by the ISS FS
and the SRME methods. In other words, for ISS free-surface multi-
ple prediction, the input data are without reference waves and with-
out all ghosts; for SRME free-surface multiple prediction, the input
data are without the reference wave and receiver ghosts (the source
ghosts are retained in its input data).

Figure 4 shows the model with one horizontal reflector and a free
surface. Based on this model, we use the Cagniard-de Hoop (CdH)
method (Cagniard, 1939; de Hoop, 1959) to generate the data. For a
model with one horizontal reflector and a free surface, the CdH
method is able to obtain the analytical solutions of different events
separately. This allows us to generate data according to each algo-
rithm’s required input and to attribute any difference in the compari-
son to the two prediction algorithms rather than to numerical or
other issues with the data. Figures 5 and 6 show the inputs to
the ISS and SRME free-surface multiple predictions, respectively.
Figures 7 and 8 show the prediction results from ISS and SRME.
For the ISS free-surface multiple prediction, we use equation 1 for
n ¼ 2 (for first-order free-surface multiples). Figures 9 and 10 show
the trace comparison at a 500 m offset between the input data and
the free-surface multiple predictions from ISS and SRME, respec-
tively. The results show that ISS FSME predicts free-surface multi-
ples with accurate time and amplitude, whereas SRME predicts
free-surface multiples with approximate time and amplitude.

The second set of comparisons

Figure 11 shows the model we used to generate analytic input
data in the ðkx;ωÞ domain for a 1D subsurface (using the reflectivity

Figure 3. Three sets of comparisons between the ISS free-surface
multiple prediction and the SRME free-surface multiple prediction.

Figure 4. A 1D subsurface model with a horizontal reflector and a
free surface.

Figure 5. Input data for the ISS free-surface multiple prediction.
Note that only primaries and free-surface multiples are generated
for ISS FSME input.
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method). For example, a primary due to a horizontal reflector has
the analytic form shown below (see, e.g., Stolt and Weglein, 1985):

−Rðkx;ωÞ
eiqð2a−zg−zsÞ

2iq
; (4)

where Rðkx;ωÞ; a; zg and zs are the plane-wave reflection coeffi-
cient, depths of the reflector, receiver, and source, respectively;

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2∕c20 − k2x

p
, where c0 is the velocity above the reflector.

For this model, the above expression for a primary can be gener-
alized to generate other events analytically. A Ricker wavelet with
a peak frequency at 30 Hz is convolved with the analytic form to
generate the data.

Figure 6. Input data for the SRME free-surface multiple prediction.
Note that primaries and free-surface multiples and their source
ghosts are generated for SRME input.

Figure 7. ISS free-surface multiple prediction (D 0
2 in equation 1)

with the input in Figure 5.

Figure 8. SRME free-surface multiple prediction (equation 3) with
the input in Figure 6.

Figure 9. A trace comparison at a 500 m offset between the input of
the ISS FSME and its prediction. The red and blue lines represent
input data to the ISS FSME and its prediction, respectively. We can
see that the ISS free-surface multiple prediction agrees with the ac-
tual free-surface multiple very well. Note that the predicted free-sur-
face multiple has an opposite sign compared with the actual free-
surface multiple, we first flip the polarity of the prediction and then
compare it with the actual data for easy comparison.
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In our example, (1) only three events (two primaries and one free-
surface multiple) are generated and (2) the depths of the reflectors
and velocities are chosen such that the second primary destructively
interferes with the free-surface multiple. We examine two cases us-
ing input data with and without random noise. The only difference
between these two tests is the input data; the input data for test 1
contains no noise, whereas the input data for test 2 contains ran-
dom noise.
Figures 12, 13, 14, 15, and 16 show the synthetic input data, ISS

free-surface multiple prediction, SRME free-surface multiple pre-
diction, results after the ISS FSME and SRME + adaptive, and
the actual primary, respectively. For the predictions of free-surface
multiples in Figures 13 and 14, higher order free-surface multiples
(as we know) are also predicted and that the result from ISS FSME
was obtained by directly subtracting the ISS prediction result from
the data without an adaptive procedure, whereas the result from
SRME was obtained by combining the SRME free-surface multiple
prediction and the adaptive procedure.
Comparing the primary in the data (Figure 17) with the multiple-

removal result after ISS FSME (Figure 15), we find that, with ac-
curate multiple prediction, the ISS FSME has precisely removed the
free-surface multiple and recovered the primary.
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Figure 11. A 1D subsurface model with two primary events and
one free-surface multiple event.

Input data with no noise
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Primary

Figure 12. Input data generated based on the model shown in
Figure 11.

ISS FMSE prediction with no noise
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Figure 13. Prediction of a free-surface multiple by ISS FSME (D 0
2

in equation 1) using the input data shown in Figure 12.

Figure 10. A trace comparison at a 500 m offset between the input
of the SRME and its prediction. The red and blue lines represent the
input data to the SRME and its prediction for free-surface multiples,
respectively. We can see from this trace comparison that the SRME
provides an approximate free-surface multiple prediction.

SRME prediction with no noise
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Figure 14. Prediction of a free-surface multiple by SRME using the
input data shown in Figure 12.
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Comparing the original data (Figure 12) with the result after
SRME + adaptive (Figure 16), we noted that SRME can success-
fully remove the isolated multiple. The isolated free-surface multi-
ple in Figure 12 is removed in Figure 16. In Figure 16, the arrows

point to the removed free-surface multiple. However, the adaptive
procedure can easily damage the primary, which interferes with
the multiple (the red circle in Figure 16). It is worth mentioning
that we used least-squares (L2-norm) energy minimization adaptive
subtraction, which is a current standard practice in the industry, to
remove the predicted free-surface multiple event from the data in
Figure 16.
Figures 18, 19, 20, 21, and 22 provide trace plots to examine the

results in detail at different offsets. In these trace plots, the red, blue,
and green lines represent the actual data, ISS FSME multiple pre-
diction, and SRME multiple prediction, respectively. In the 100,
500, 1000, and 1250 m offset trace plots, primaries and multiples
are separated from each other. These plots show that ISS free-
surface multiple prediction has an accurate time and amplitude,
hence, it overlaps with the actual multiples in the data, whereas
SRME prediction has approximate amplitude and time and it shows
disagreement with the actual multiple in the data.
At offset 750 m, the primary and multiple overlap. Figure 23

shows a comparison between the actual primary (blue line) with the

SRME adaptive sub with no noise
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Figure 16. Free-surface multiple removal result by combining the
SRME prediction (Figure 14) and adaptive subtraction.

Actual primary with no noise
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Figure 17. Actual primaries in the data shown in Figure 12.
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Figure 18. Trace comparison at offset 100 m. The red, blue, and
green lines represent actual data, ISS free-surface multiple predic-
tion, and SRME prediction, respectively.
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Figure 15. Free-surface multiple removal result after directly sub-
tracting the ISS prediction result (Figure 13) from the data (Figure 12).
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Figure 19. Trace comparison at offset 500 m. The red, blue, and
green lines represent actual data, ISS free-surface multiple predic-
tion, and SRME prediction, respectively.
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multiple-removal result after ISS FSME (the red line) and the multi-
ple-removal result after SRME + adaptive (the green line) at offset
750 m. This figure shows that the primary can be recovered by ISS
FSME, whereas the SRME combined with the adaptive damages
the primary.
For test 2, in which the input data have random noise, Figures 24,

25, 26, 27, 28, and 29 show the synthetic input data, multiple pre-
diction results from ISS FSME, SRME, results after the ISS FSME
and SRME + adaptive, and the actual primary, respectively. Simi-
larly, Figures 30, 31, 32, 33, 34, and 35 provide trace plots. Exam-
ining these comparisons, we can draw a similar conclusion as in the
case without noise.

The third set of comparisons

Weglein et al. (2003) show the model-type independent proper-
ties of the ISS FSME algorithm and the internal multiple attenuation
algorithm. The meaning of model-type independent is that the re-
moval of free-surface multiples and the attenuation of internal mul-
tiples is each achievable with precisely the same algorithm for an
entire class of earth model types. The members of the models’ type
class include acoustic, elastic, and anelastic media. Matson (1997)
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Figure 20. Trace comparison at offset 750 m. The red, blue, and
green lines represent actual data, ISS free-surface multiple predic-
tion, and SRME prediction, respectively.
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Figure 21. Trace comparison at offset 1000 m. The red, blue, and
green lines represent actual data, ISS free-surface multiple predic-
tion, and SRME prediction, respectively.
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Figure 22. Trace comparison at offset 1250 m. The red, blue, and
green lines represent actual data, ISS free-surface multiple predic-
tion, and SRME prediction, respectively.
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Figure 23. Trace comparison at offset 750 m. The red, blue, and
green lines represent the actual primary, result after ISS FSME,
and result after the SRME + adaptive, respectively.
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Figure 24. Input data with random noise added to the analytic data.
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ISS FMSE prediction with noise
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Figure 25. Prediction of a free-surface multiple by ISS FSME (D 0
2

in equation 1) using the input data shown in Figure 24.

SRME prediction with noise
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Figure 26. Prediction of a free-surface multiple by SRME using the
input data shown in Figure 24.
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Figure 27. Free-surface multiple removal result after directly
subtracting the ISS prediction result (Figure 25) from the data
(Figure 24).

SRME adaptive sub with noise
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Figure 28. Free-surface multiple removal result by combining the
SRME prediction (Figure 26) and adaptive subtraction.
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Figure 29. Actual primaries in the data shown in Figure 24.
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Figure 30. Trace comparison at an offset of 100 m. The red, blue,
and green lines represent the actual data, ISS free-surface multiple
prediction, and SRME prediction, respectively.
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studies and demonstrates the effectiveness of ISS elastic multiple
removal from multicomponent land and ocean-bottom seismic data.
Here, we provide a numerical example to demonstrate and confirm
the effectiveness of the ISS FSME algorithm for an absorptive
medium.
The input data are generated based on the model shown in

Figure 11, withQ values 200, 100, and 100 for the three layers from
top to bottom. The analytic input data are generated using the ana-
lytic forms of different events (see, e.g., equation 4 for a primary)
and a constant Q model (known as the frequency-independent Q
model) (see Kolsky, 1956). Figures 36, 37, and 38 show the input
data, ISS free-surface multiple prediction, and SRME free-surface
multiple prediction, respectively. Figures 39, 40, and 41 show the
result after the ISS FSME, SRME + adaptive and actual primary in
the data, respectively. Figures 42, 43, 44, 45, and 46 show the trace
comparison among the input data, ISS free-surface multiple predic-
tion, and SRME free-surface multiple prediction at offsets of 100,
500, 750, 1000, and 1250 m. Figure 47 shows the trace comparison
at offset 750 m between the actual primary, the result after the ISS
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Figure 31. Trace comparison at an offset of 500 m. The red, blue,
and green lines represent the actual data, ISS free-surface multiple
prediction, and SRME prediction, respectively.
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Figure 32. Trace comparison at an offset of 750 m. The red, blue,
and green lines represent the actual data, ISS free-surface multiple
prediction, and SRME prediction, respectively.
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Figure 33. Trace comparison at an offset of 1000 m. The red, blue,
and green lines represent the actual data, ISS free-surface multiple
prediction, and SRME prediction, respectively.
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Figure 34. Trace comparison at an offset of 1250 m. The red, blue,
and green lines represent the actual data, ISS free-surface multiple
prediction, and SRME prediction, respectively.
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Figure 35. Trace comparison at an offset of 750 m. The red, blue,
and green lines represent the the actual primary, result after ISS
FSME, and result after the SRME + adaptive, respectively.
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FSME, and the result after the SRME + adaptive. Examining the
result of this test, we can conclude that, for data generated by an
acoustic medium that’s absorptive, the same ISS FSME algorithm

remains effective to accurately predict the free-surface multiple and
can surgically remove free-surface multiples that interfere with pri-
maries, without damaging the primaries. We have numerically con-
firmed that the ISS FSME algorithm remains effective with data

ISS FMSE prediction
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Figure 37. Prediction of a free-surface multiple by ISS FSME (D 0
2

in equation 1) using the input data generated by an absorptive
medium shown in Figure 36.

SRME prediction
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Figure 38. Prediction of a free-surface multiple by SRME using the
input data generated by an absorptive medium shown in Figure 36.
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Figure 36. Input data generated from an absorptive medium.
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Figure 41. Actual primaries in the input data shown in Figure 36.
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Figure 40. Free-surface multiple removal result by combining the
SRME prediction (Figure 38) and adaptive subtraction.
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Figure 39. Free-surface multiple removal result after directly sub-
tracting the ISS prediction result (Figure 37) from the data (Figure 36).
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Figure 42. Trace comparison at offset 100 m. The red, blue, and
green lines represent the actual data, ISS free-surface multiple
prediction, and SRME prediction, respectively.

0.85 0.9 0.95 1 1.05
−1

−0.5

0

0.5

1
x 10

−4 Offset 500 m 

Time (s)

A
m

pl
itu

de

Figure 43. Trace comparison at offset 500 m. The red, blue, and
green lines represent the actual data, ISS free-surface multiple
prediction, and SRME prediction, respectively.
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Figure 44. Trace comparison at offset 750 m. The red, blue, and
green lines represent the actual data, ISS free-surface multiple
prediction, and SRME prediction, respectively.
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Figure 45. Trace comparison at offset 1000 m. The red, blue, and
green lines represent the actual data, ISS free-surface multiple
prediction, and SRME prediction, respectively.
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Figure 46. Trace comparison at offset 1250 m. The red, blue, and
green lines represent the actual data, ISS free-surface multiple
prediction, and SRME prediction, respectively.
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Figure 47. Trace comparison at offset 750 m. The red, blue, and
green lines represent the actual primary, result after ISS FSME,
and result after the SRME + adaptive, respectively.
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from an absorptive medium. That result is consistent with the model
type independent nature of the algorithm.
ISS FSME is more computational costly than SRME. The ISS

free-surface multiple prediction equation is in the wavenumber-
frequency domain; the obliquity factor in it ð2iqÞ precludes a simple
transform from the wavenumber-frequency to the space-frequency
domain to obtain a convolutional equation (which is cheaper) as in
SRME free-surface multiple prediction.

DISCUSSION

Providing prerequisites of the ISS FSME algorithm

ISS FSME has well-understood prerequisites: source signature
estimation and removal, removal of the reference wave, and source
and receiver-side deghosting. Providing these prerequisites is rela-
tively mature for marine applications. Advances in acquisition (e.g.,
over/under the cable and the dual-sensor towed streamer) have pro-
vided the data requirements of more effective wave theoretic meth-
ods for those prerequisites. For example, Weglein and Secrest
(1990), Osen et al. (1998), and Tan (1999) provide effective meth-
ods to estimate the source signature and radiation pattern using
Green’s theorem. For prediction (and use or removal) of the refer-
ence waves, there are distinct advantages (e.g., [1] there is no need
for Fourier transforms over the receivers and sources and [2] it can
accommodate a horizontal or nonhorizontal measurement surface).
Applying Green’s theorem wave separation methods on marine data
has been advanced by Weglein et al. (2002), Zhang (2007), and
Mayhan and Weglein (2013). For deghosting, the industry’s widely
used P − Vz method (e.g., Amundsen, 1993) can be effective when
the measurement surface is horizontal. The Green’s theorem-based
deghosting method (Weglein et al., 2002; Zhang, 2007; Mayhan,
2013) is the natural Green’s theorem wave theoretic generalization
of P − Vz, and it has been extended to accommodate a depth-
variable cable by the recent work of Wu and Weglein (2017), Zhang
(2017), and Shen (2017). To provide the prerequisites for onshore
application, the recent work of Wu and Weglein (2014, 2015,
2016a, 2016b) has contributed to extending off-shore Green’s
theorem preprocessing for wavelet estimation, reference waves
(including ground roll) prediction and removal, and deghosting
to the on-shore elastic case, in preparation for on-shore processing.

New adaptive criteria that aligned with the algorithm
itself

We have shown that, given its prerequisites, ISS FSME will pre-
dict free-surface multiples with an accurate time and an accurate
amplitude. These predicted multiples can be used to surgically re-
move free-surface multiples that interfere with primaries, without
damaging the primaries. In practice, an adaptive step could still
be needed. The energy minimization criteria are viewed (by some
thoughtful individuals) as the biggest current impediment to effec-
tive multiple removal under complex circumstances. New adaptive
criteria need to be developed. We are developing new adaptive
criteria derived as a property of the multiple removal algorithm.
Candidate criteria are proposed by Weglein (2012).

CONCLUSION

We examined the origin of the missing obliquity factor in the
SRME prediction step. We then used 1D prestack examples for

a quantitative comparison of free-surface multiple prediction be-
tween the ISS FSME and SRME methods. The ISS FSME method
provides a toolbox capability and an option for a more accurate pre-
diction of free-surface multiples. There are circumstances in which
this new and more effective capability might not be needed. For
example, to remove isolated free-surface multiples, an approximate
free-surface multiple prediction plus an adaptive subtraction by
the SRME method might be sufficient and may be indicated as a
cost-effective approach. However, there are many circumstances
in which this new ISS FSME capability is called-for and needed.
For example, (1) to remove a free-surface multiple that is interfering
with a primary without damaging the primary, by providing a more
accurate free-surface multiple prediction and relying less on the
adaptive step. (2) And when it is unclear if a free-surface multiple
is (or is not) interfering with a primary, ISS FSME would be a pru-
dent choice. When this capability is needed, the ISS FSME method
provides an important and valuable option in the toolbox. It goes
without saying that for the SRME and ISS FSMEmethods to deliver
on their promises, they must be applied in their 2D and 3D versions,
in which the subsurface has 2D and 3D variability.
ISS methods for attenuating or eliminating internal multiples

place a high bar on not having residual free-surface multiples or
damaged primaries in the data. If ISS internal multiple removal
is the goal, we suggest a serious consideration of the most effective
method for removing free-surface multiples, ISS FSME.
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APPENDIX A

THE ISS AND ITS SUBSERIES FOR FSME

In this section, we provide a derivation of the ISS FSME method.
Toward that end, we begin with (following Weglein et al., 2003) a
very brief introduction and background on scattering theory and the
distinct forward and ISS. A fuller development of the concepts and
methods in this appendix can be found in Weglein et al. (2003) and
Weglein (2018).

The seismic forward problem

The seismic forward-modeling problem is to predict the wave-
field in a medium when the medium properties that govern wave
propagation in the medium and the source that generates the wave-
field are prescribed. For example, for an acoustic, one-parameter
(variable velocity, constant density) medium, the single-frequency
wave equation for the pressure field due to a localized Dirac delta
function source at rs is

½∇2 þ k2�Gðr; rs;ωÞ ¼ −δðr − rsÞ; (A-1)
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where k ¼ ω∕cðrÞ, ω is the temporal frequency, and cðrÞ is the
velocity configuration. The wavefield Gðr; rs;ωÞ at r due to source
at rs can be modeled directly in terms of the actual velocity con-
figuration cðrÞ using, e.g., a finite difference, finite element, and
lattice Boltzmann method given the medium properties cðrÞ and
the source function.
In the scattering theory, the forward problem is described differ-

ently. The scattering theory is a form of perturbation theory. That is,
in the scattering theory, the actual medium is separated into two
parts: One part is called the reference medium, and the other part
is called the perturbation (the difference between the actual medium
and the reference medium). In general, we can express the differ-
ential equations governing wave propagation in the actual medium
and reference medium as

LG ¼ −δðr − rsÞ (A-2)

and

L0G0 ¼ −δðr − rsÞ; (A-3)

respectively. The terms L and L0 are the general differential oper-
ators in the actual and reference medium, and G and G0 are the
actual and reference wavefields, respectively. The symbol δ is
the Dirac delta source function, and r and rs are the field and source
locations, respectively. The perturbation differential operator is de-
fined as V ≡ L − L0. The differential operators L and L0 contain the
properties in the actual and the reference media that govern wave
propagation in these media. Different earth model types are described
by different forms of operators L and L0. These operators contain the
(spatially variant) parameters of the specific earth model type (e.g.,
acoustic, elastic, anisotropic, and anelastic). For example, for an acous-
tic, variable-velocity constant-density model type,L ¼ ∇2 þ k2, where
k ¼ ω∕cðrÞ as illustrated in equation A-1. The term L0 ¼ ∇2 þ k2,
where k0 ¼ ω∕c0ðrÞ as in ½∇2 þ k20�G0ðr; rs;ωÞ ¼ −δðr − rsÞ.
We can express the actual medium differential operator L in

terms of a reference medium differential operator L0 and a pertur-
bation operator V as L ¼ L0 þ V. The perturbation operator is de-
fined as V ¼ L − L0. Thus, equation A-2 can be written as

ðL0 þ VÞG ¼ −δ: (A-4)

Rearrange the above expression as follows:

L0G ¼ −δ − VG;

G ¼ −L−1
0 δ − L−1

0 VG: (A-5)

Now, substituting δ ¼ −L0G0 (equation A-3) and considering
L−1
0 ¼ −G0, we have

G ¼ L−1
0 L0G0 − L−1

0 VG;

G ¼ G0 þG0VG:: (A-6)

The above equation A-6 is called the Lippmann-Schwinger
equation (e.g., Taylor, 1972). The Lippmann-Schwinger equation
is an operator relationship among G (the wavefield in the actual
medium), G0 (the wavefield in the reference medium), and V (the
perturbation). The symbol G appears on both sides of equation A-6.
To solve equation A-6 for G, we can treat G ¼ G0 (the first term on

the right-hand side of equation A-6) as a first approximation for G.
Then, substituting G ¼ G0 on the right side of equation A-6, we
find an approximation for G as G0 þ G0VG0, and then once again
we substitute this next approximation for G on the right side of
equation A-6; we find an updated approximation for G:

G0 þ G0VG0 þ G0VG0VG0: (A-7)

Then, continuing this successive substitution process for G on the
right side of equation A-6, we find

G¼ G0 þG0VG0 þG0VG0VG0 þG0VG0VG0VG0þ · · · :

(A-8)

The difference between actual wavefield G and reference wavefield
G0 is defined as scattered wavefield ψ s ¼ G −G0.
The seismic forward problem is solved in the scattering theory by

equation A-8; i.e., given the reference wavefield G0 and perturba-
tion V (the right side of equation A-8), equation A-8 can be used as
a forward-modeling tool to obtain the actual wavefield G (the left
side of equation A-8). The forward problem determines G from L.
In scattering theory, L is given by L0 and V; therefore, G0 and V
enter the forward or seismic modeling series (equation A-8). In
common with all modeling methods, modeling (or the forward
problem) within scattering theory depends on first specifying the
earth model type and then all the precise earth properties within
that model type. The recorded seismic data correspond to the wave-
field (G or ψ s) recorded on the measurement surface.

The seismic inverse problem

The seismic inverse problem is to solve for the medium proper-
ties L in terms of recorded values of the wavefield on the measure-
ment surface outside V and the source.
The seismic inverse problem is solved in scattering theory by first

solving for V. Then, V is added to the reference medium operator L0

to obtain the actual medium operator L. To know L is to know all
the physical properties that govern wave propagation in the actual
medium. To derive the inverse scattering method to solve for V, let’s
first return to the forward series (equation A-8). We note that equa-
tion A-8 has the form of a generalized geometric series (Weglein,
2017)

G − G0 ¼ S ¼ arþ ar2 þ ar3þ · · ·¼ ar
1 − r

; (A-9)

for jrj < 1, where we have identified in our simple algebraic geo-
metric series analog a ¼ G0 and r ¼ VG0. If we label the terms on
the right side of equation A-9 as S1 ¼ ar; S2 ¼ ar2, : : : , where Sn
is the part of S that is nth order in r; then, equation A-9 becomes

S ¼ S1 þ S2 þ S3þ · · ·¼ ar
1 − r

: (A-10)

Solving equation A-10 for r, in terms of S∕a, produces an inverse
geometric series
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r ¼ S∕a
1þ S∕a

¼ S∕a − ðS∕aÞ2 þ ðS∕aÞ3þ · · · ;

¼ r1 þ r2 þ r3þ · · · ; (A-11)

when jS∕aj < 1, where rn is the portion of r that is nth order in S∕a.
For the seismic inverse problem, we evaluate equation A-8 for

sources and receivers on the measurement surface and we associate
S with the recorded values of the scattered wavefield S ¼ ðψ sÞms ¼
ðG −G0Þms, and the forward series follow from treating the forward
solution as S in terms of V, and the inverse series as V in terms of S.
The inverse series is the analog of equation A-11, where r1; r2; : : :
are replaced with V1; V2; : : : :

V ¼ V1 þ V2 þ V3þ · · · ; (A-12)

where Vn is the portion of V that is nth order in the data D. The
data D are the recorded values of ψ s, that is, ðψ sÞMS. Substituting
equation A-12 into equation A-8 and evaluating both sides of equa-
tion A-8 on the measurement surface, and setting terms of equal
order in the data equal, produces the following set of equations
(see, e.g., Weglein et al., 2003):

ðψ sÞms ¼ ðG0V1G0Þms; (A-13)

0 ¼ ðG0V2G0Þms þ ðG0V1G0V1G0Þms; (A-14)

0 ¼ ðG0V3G0Þms þ ðG0V2G0V1G0Þms þ ðG0V1G0V2G0Þms

þ ðG0V1G0V1G0V1G0Þms; (A-15)

0 ¼ ðG0VnG0Þms þ ðG0V1G0Vn−1G0Þmsþ · · ·

þ ðG0V1G0V1G0V1 · · · G0V1G0Þms: (A-16)

The term V1 can be solved in equation A-13 using the measured
scattered wavefield ðψ sÞms and the reference wavefield G0. Then,
substituteV1 into equation A-14 and solve forV2 as in equation A-13.
In this manner, we can compute any Vn only using the measured scat-
tered wavefield ðψ sÞms and the reference wavefield G0. Hence, V ¼P∞

n¼1 Vn is an explicit direct inversion solution and it does not require
any subsurface information. The inverse step in equations A-13–A-16
when solving for V1; V2; V3; : : : involves inverting the same un-
changed operator G0, and when the reference medium is homo-
geneous, that inverse step is analytic (Weglein et al., 2003).
The ISS methods were first developed by Moses (1956), Prosser

(1969), and Razavy (1975). Weglein et al. (1981) and Stolt and
Jacobs (1980) apply the ISS methods to extract multidimensional
earth information from seismic data. Carvalho (1992) performs em-
pirical tests of the ISS method for a normal-incident plane wave on a
1D acoustic medium. The result indicated that the full series only
converges when the difference between the actual earth’s acoustic
velocity and reference velocity (the water velocity) is less than 11%.
In response, the idea of isolated task-specific subseries was devel-
oped as a way to extract useful information from the only direct
inversion method for a multidimensional subsurface. The isolated
task ISS subseries are (1) FSME, (2) internal multiple attenuation/

elimination, (3) Q compensation without knowing or estimating Q,
(4) depth imaging, and (5) inversion (parameter estimation). The
identification of the terms in the ISS to be included in a given
task-specific subseries used several different types of analysis with
testing of new concepts to evaluate, refine, and develop embryonic
thinking based on forward series processes and analogs and a large
dose of physical intuition (Weglein et al., 2003). For example, for
free-surface multiples, understanding how the forward scattering
series produces or generates a free-surface multiple event provides
a “hint” of where the inverse process that removes that event might
be located. That hint, due to a symmetry between event creation and
event removal, turns out to be useful. For internal multiples, the
location of terms that perform attenuation and elimination is de-
scribed in Weglein et al. (2003, pp. R55–R62). For the purpose
of this paper, it is useful to review the thinking behind locating
the ISS subseries for removing free-surface multiples.
In the absence of a free surface (and choosing an infinite whole

space of water as the reference medium), a forward series equa-
tion A-8 describing the data is constructed from the direct propagating
Green’s function Gd

0 and the perturbation operator V. The symbol V
represents the difference between the actual material properties of the
world and the reference medium. The symbol V has nonzero values
starting at the water bottom. In the presence of a free surface, let
Gfs

0 corresponds to the extra part of the Green’s function due to a
Dirac delta point source in the water column that propagates up
and reflects off the free surface and has a field point below the free
surface.
With the free surface present, the forward series is constructed

from G0 ¼ Gd
0 þ Gfs

0 and the same perturbation operator V. Hence,
G0 with or without GFS

0 is the only difference between the forward
series with and without the free surface. Therefore, Gfs

0 is respon-
sible for generating those events in the forward or modeling series
that owe their existence to the presence of the free surface, i.e.,
ghosts and free-surface multiples. In the inverse series, equa-
tions A-13–A-16, it is reasonable to infer that Gfs

0 will be respon-
sible for all the extra tasks that inversion needs to perform when
starting with data containing ghosts and free-surface multiples
rather than data without those events. Those extra inverse tasks in-
clude deghosting and the removal of free-surface multiples.
The inverse series expansions, equations A-13–A-16, consist of

terms ðG0VnG0Þm with G0 ¼ Gd
0 þ Gfs

0 . Source and receiver de-
ghosting is realized by removing the two outside G0 ¼ Gd

0 þ Gfs
0

functions and replacing them with Gd
0 .

Data are considered the measured values of the scattered wave-
field, equation A-13. The source- and receiver-deghosted data (rep-
resented by ~D) are related to V1 as ~D ¼ ðGd

0V1Gd
0Þm. After the

deghosting operation, the objective is to remove the free-surface
multiples from the deghosted data ~D.
The terms in the inverse series expansions, equations A-13–A-16,

replacing D with input ~D, contain Gd
0 and Gfs

0 between the oper-
ators Vi. The outer Gd

0s (rather than G0 ¼ Gd
0 þ Gfs

0 ) indicate that
the data have been source and receiver deghosted. The inner Gd

0 and
Gfs

0 are where the five inversion tasks (free-surface multiple re-
moval, internal multiple removal, depth imaging, Q compensation
without knowing or estimating Q, and inversion/parameter estima-
tion) reside. If we consider ISS and G0 ¼ Gd

0 þ Gfs
0 , and if we as-

sume that the data have been source and receiver deghosted (i.e.,Gd
0

replaces ðGfs
0 þ Gd

0Þ on the outside of all terms), then the terms in
the series are of three types:

ISS free-surface multiple elimination S473
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Type 1∶ðGd
0ViG

fs
0 VjG

fs
0 VkGd

0Þms; (A-17)

Type 2∶ðGd
0ViG

fs
0 VjGd

0VkGd
0Þms; (A-18)

Type 3∶ðGd
0ViGd

0VjGd
0VkGd

0Þms: (A-19)

We interpret these types of terms from a task isolation point of view.
Type 1 terms have onlyGfs

0 between two Vi, Vj contributions; these
terms when added to ~D remove free-surface multiples and perform
no other task. Type 2 terms have Gd

0 and Gfs
0 between two Vi, Vj

contributions; these terms perform free-surface multiple removal
plus a task associated with Gd

0 . (Tasks that Gd
0 will achieve are

the following: internal multiple removal, Q compensation, depth
imaging, and nonlinear direct parameter estimation.) Type 3 terms
have only Gd

0 between two Vi, Vj contributions; these terms do not
remove any free-surface multiples. Type 2 terms are coupled tasks
with a free surface and Gd

0 tasks. The idea behind the task-separated
subseries is twofold: (1) isolate the terms in the overall series that
perform a given task as if no other tasks exist (e.g., type 1 above)
and after performing that task on the data and (2) not to return to the
original inverse series with its coupled tasks involving Gfs

0 and Gd
0 ;

rather, restart the problem with an input data free of free-surface
multiples D 0.
With the idea of isolated task-separated subseries, the subseries

for removing free-surface multiples reside in type 1 terms. Collect-
ing all type 1 terms, we have

D 0
1 ≡ ~D ¼ ðGd

0V1Gd
0Þms; (A-20)

D 0
2 ¼ ðGd

0V2Gd
0Þm ¼ −ðGd

0V1G
fs
0 V1Gd

0Þms; (A-21)

D 0
3 ¼ −ðGd

0V1G
fs
0 V1G

fs
0 V1Gd

0Þms − ðGd
0V2G

fs
0 V1Gd

0Þms

− ðGd
0V1G

fs
0 V2Gd

0Þms : : : ; (A-22)

where D 0
1 ≡ ~D is the first term; it is the seismic data after the re-

moval of the reference wave G0 ¼ Gd
0 þ GFS

0 and then source
and receiver deghosting the scattered wavefield.
The term D 0

3 can be simplified as (see, e.g., Weglein et al., 2003)

D 0
3 ¼ ðDd

0V1G
fs
0 V1G

fs
0 V1Gd

0Þms: (A-23)

Equation A-20 can be expressed as follows:

D 0
1ðxg;zg;xs;zs;ωÞ¼

Z
dx1dz1dx2dz2Gd

0ðxg;zg;x1;z1;ωÞ

×V1ðx1;z1;x2;z2;ωÞGd
0ðx2;z2;xs;zs;ωÞ:

(A-24)

Following the Fourier transform convention defined in, e.g.,
Clayton and Stolt (1981) and Weglein et al. (2003)

Dðkg; ks;ωÞ ¼
ZZZ

Dðxg; xs; tÞeiksxs−ikgxgþiωtdtdxgdxs:

(A-25)

Fourier transforming over xg; xs on both sides of equation A-24

D 0
1ðkg;zg;ks;zs;ωÞ¼

Z
dx1dz1dx2dz2Gd

0ðkg;zg;x1;z1;ωÞ

×V1ðx1;z1;x2;z2;ωÞGd
0ðx2;z2;ks;zs;ωÞ:

(A-26)

The terms Gd
0ðkg; zg; x1; z1;ωÞ and Gd

0ðx2; z2; ks; zs;ωÞ are (see,
e.g., Clayton and Stolt, 1981)

Gd
0ðkg; zg; x1; z1;ωÞ ¼ −

e−iðkgx1−qgjz1−zgjÞ

2iqg

¼ −
e−iðkgx1−qgðz1−zgÞÞ

2iqg
(A-27)

and

Gd
0ðx2; z2; ks; zs;ωÞ ¼ −

eiðksx2þqsjz2−zsjÞ

2iqs

¼ −
eiðksx2þqsðz2−zsÞÞ

2iqs
; (A-28)

respectively. In equations A-27 and A-28, we have assumed z1 > zg
and z2 > zs to remove the absolute value (jz1 − zgj → ðz1 − zgÞ,
jz2 − zsj → ðz2 − zsÞ) in the Green’s functions. This assump-
tion corresponds to the assumption that the perturbation
V1ðx1; z1; x2; z2Þ is below (and larger than) the source zs and
receiver depth zg (i.e., the measurement surface). The positive di-
rection for z is pointing downward; hence, the perturbation being
nonzero below the measurement surface means z1 > zg and z2 > zs
for a nonzero V1 contribution.
Substituting equations A-27 and A-28 into equation A-26, we

have

D 0
1ðkg; zg; ks; zs;ωÞ ¼

Z
dx1dz1dx2dz2

e−iðkgx1−qgðz1−zgÞÞ

2iqg

× V1ðx1; z1; x2; z2;ωÞ
eiðksx2þqsðz2−zsÞÞ

2iqs

¼ e−iqgzge−iqszs

2iqg2iqs
V1ðkg; qq; ks; qs;ωÞ;

(A-29)

where we recognize the integrals over x1; z1; x2; z2 as Fourier
transforms.
Similarly, in equation A-21,

D 0
2ðxg; zg; xs; zs;ωÞ ¼ ðGd

0ðxg; zg; x1; z1ÞV2ðx1; z1; x2; z2;ωÞ
× Gd

0ðx2; z2; xs; zs;ωÞÞms (A-30)
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can be expressed as

D 0
2ðkg; zg; ks; zs;ωÞ ¼

e−iqgzge−iqszs

2iqg2iqs
V2ðkg; qq; ks; qsωÞ:

(A-31)

And for

ðGd
0ðxg;zg;x1;z1;ωÞV2ðx1;z1;x2;z2;ωÞGd

0ðx2;z2;xs;zs;ωÞÞms¼
−ðGd

0ðxg;zg;x1;z1;ωÞV1ðx1;z1;x2;z2;ωÞGfs
0 ðx2;z2;x3;z3;ωÞ

×V1ðx3;z3;x4;z4;ωÞ×Gd
0ðx4;z4;xs;zs;ωÞÞms; (A-32)

the left side can be expressed as

LHS ¼ e−iqgzge−iqszs

2iqg2iqs
V2ðkg; qq; ks; qs;ωÞ: (A-33)

To solve for the right side of equation A-32, we have
Gd

0ðkg; zg; x1; z1;ωÞ and Gd
0ðx2; z2; ks; zs;ωÞ expressed in equa-

tions A-27 and A-28, respectively. The term Gfs
0 ðx2; z2; x3; z3;ωÞ

can be expressed as follows (see Figure A-1):

Gfs
0 ðx2; z2; x3; z3;ωÞ ¼

1

2π

Z
dk

eikðx2−x3Þeiqðz2þz3Þ

2iq
:

(A-34)

It should be noted that we have assumed that the free surface is at
depth z ¼ 0 in this expression. The right side now can be expressed
as follows:

RHS¼−Gd
0V1G

fs
0 V1Gd

0 ¼−
Z

dx1dz1dx2dz2dx3dz3dx4dz4

×
e−iðkgx1−qgðz1−zgÞÞ

2iqg
V1ðx1;z1;x2;z2;ωÞ

1

2π

×
Z

dk
eikðx2−x3Þeiqðz2þz3Þ

2iq
V1ðx3;z3;x4;z4;ωÞ

×
eiðksx4þqsðz4−zsÞÞ

2iqs
¼−

e−iqgzge−iqszs

2iqg2iqs

1

2π

×
Z

dkV1ðkg;qq;k;q;ωÞ
1

2iq
V1ðk;q;ks;qs;ωÞ:

(A-35)

Canceling common factors on both sides (equations A-33 and
A-35), we have

V2ðkg; ks;ωÞ ¼ −
1

2π

Z
dkV1ðkg; k;ωÞ

1

2iq
V1ðk; ks;ωÞ:

(A-36)

Substituting V1 with D 0
1 using equation A-29 and V2 with D 0

2 using
equation A-31, we obtain the second term D 0

2 as follows:

D 0
2ðkg; ks;ωÞ ¼ −

1

2π

Z
dkD1ðkg; k;ωÞð2iqÞeiqðzgþzsÞ

×D1ðk; ks;ωÞ: (A-37)

In practice, equation A-37 is the free-surface elimination algorithm
that directly inputs D1 and outputs D 0

2. Next, we show one example
from Zhang (2007) to demonstrate that the ISS free-surface multi-
ple-prediction algorithm predicts free-surface multiples with accu-
rate time and amplitude.
Figure A-2 shows the model used to generate input data. The

calculations are in the data domain: V1; V2; : : : are never solved
for in ISS data-driven algorithms. The data contain the reference
waves (yellow line), source and receiver ghosts (dashed blue line),
free-surface multiples (black line), and primaries (red line). These
data are first preprocessed by distinct Green’s theorem methods to
remove the reference waves and source and receiver ghosts. Then,
the preprocessed data (consisting of primaries and free-surface
multiples [for this example], see the solid line in Figure A-3) enter
the ISS FSME algorithm. The result after ISS FSME is shown in
Figure A-3 using a dashed line. The result after ISS FSME is ob-
tained by D 0

2 þD 0
1. When D 0

2 is added to D 0
1, two things happen:

First-order free-surface multiples are eliminated, and all higher

Figure A-1. The Green’s function Gfs
0 travels up from the source to

the free surface and then down to the receiver.

Figure A-2. The model used to generate data from Zhang (2007) to
test the ISS FSME.
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order free-surface multiples are altered and prepared for their removal
by higher order terms in the ISS FSME subseries, D 0

3; D
0
4, etc.

APPENDIX B

COMPARING THE ISS FSME WITH SRME

In Appendix A, we have provided a brief derivation of the ISS
FSME algorithm. The ISS FSME inputs seismic data that are gen-
erated by monopole sources (or source arrays) and that have the
reference waves and source ghosts, receiver ghosts, and source-
and-receiver ghosts all removed.
This algorithm predicts the exact time and exact amplitude of all

free-surface multiples at all offsets. This provides a good starting
point and opportunity to understand under what set of approxima-
tions we can derive the SRME prediction with its approximate pre-
diction of the amplitude and phase of the free-surface multiples.
This then locates and identifies the origin of the missing physics
in the SRME prediction. It turns out that the SRME prediction
corresponds to data with the reference waves removed and with
source- and receiver-deghosted data, but where the source consists
of a vertically separated dipole source in the water column. The ver-
tically separated dipole source is defined as the limit of two vertically
separately (of opposite sign) Dirac delta sources as
the distance between them approaches zero and the
source amplitude goes to infinity, in such a way
that the product of the source amplitude and the
distance between them remains constant. Because
the data due to a vertically separated dipole source
are not realizable in practice, the idea within
SRME is to seek to approximate what a dipole
source would produce by keeping the source-side
ghost (see Figure B-1). That approximation and
substitution are the origin of the missing or erro-
neous physics and result in an approximate predic-
tion of the amplitude and phase of the free-surface
multiples. We examine the consequence of that

approximation and substitution on the exact ISS FSME prediction
in this Appendix B.
Below we follow the SRME prescription to input the data with

only the reference wave and receiver-side ghosts removed (i.e.,
keeping the source-side ghost). Under that SRME assumption,
equations A-20 and A-21 become

D 0 0
1 ¼ ðGd

0V1ðGd
0 þ Gfs

0 ÞÞms; (B-1)

D 0 0
2 ¼ ðGd

0V2ðGd
0 þ Gfs

0 ÞÞms

¼ −ðGd
0V1G

fs
0 V1ðGd

0 þGfs
0 ÞÞms: (B-2)

With

Gfs
0 ðx2; z2; ks; zs;ωÞ ¼

eiðksx2þqsðz2þzsÞÞ

2iqs
: (B-3)

Equation B-1 now becomes

D 0 0
1 ðkg; zg; ks; zs;ωÞ

¼ e−iqgzgðe−iqszs − eiqszsÞ
2iqg2iqs

V1ðkg; qq; ks; qs;ωÞ: (B-4)

The left part of equation B-2 becomes

D 0 0
2 ðkg; zg; ks; zs;ωÞ

¼ e−iqgzgðe−iqszs − eiqszsÞ
2iqg2iqs

V2ðkg; qq; ks; qs;ωÞ: (B-5)

The right part of equation B-2 becomes

−
e−iqgzgðe−iqszs − eiqszsÞ

2iqg2iqs

1

2π

Z
dkV1ðkg; qq; k; q;ωÞ

1

2iq

× V1ðk; q; ks; qs;ωÞ: (B-6)

We have

V2ðkg; ks;ωÞ ¼ −
1

2π

Z
dkV1ðkg; k;ωÞ

1

2iq
V1ðk; ks;ωÞ:

(B-7)

Figure A-3. A trace comparison between the input data D 0
1 (solid

line) to the ISS FSME and output data D 0
1 þD 0

2 after ISS FSME.
When D 0

2 is added to D 0
1, two things happen: The first-order free-

surface multiple is eliminated, and all higher order free-surface mul-
tiples are altered and are prepared for their removal by D 0

3; D
0
4, etc.

Figure B-1. (a) Monopole source and its 2D Green’s function in the kx;ω domain.
(b) Dipole source and its 2D Green’s function. (c) Monopole source and its source
ghosts and their 2D Green’s functions. The free surface is at a depth of z ¼ 0. The term
q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω2∕c0Þ − k2x

p
, where ω; kx, and c0 are the temporal frequency, horizontal wave-

number, and medium velocity, respectively.
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Now, substituting V1; V2 with D 0 0
1 ; D

0 0
2 in equations B-4 and B-5,

respectively, we have

D 0 0
2 ðkg; zg; ks; zs;ωÞ ¼

1

2π

Z
dkD 0 0

1 ðkg; zg; k; zs;ωÞ

2iqeiqzg

ðeiqzs − e−iqzsÞD
0 0
1 ðk; zg; ks; zs;ωÞ:

(B-8)

Let us take a look at the factor ðeiqzs − e−iqzsÞ in the denominator.
For a source that is close to the free surface (which means zs is small
because the free surface is assumed to be at a depth of z ¼ 0 in this
case), the factor ðeiqzs − e−iqzsÞ can be approximated by

eiqzs − e−iqzs ≈ iqe−iqzs2zs: (B-9)

Under this approximation, equation B-8 becomes

D 0 0
2 ðkg; zg; ks; zs;ωÞ

¼ 1

2π

Z
dkD 0 0

1 ðkg; zg; k; zs;ωÞ
2iqeiqzg

ðeiqzs − e−iqzsÞ
×D 0 0

1 ðk; zg; ks; zs;ωÞ ≈
1

2π

Z
dkD 0 0

1 ðkg; zg; k; zs;ωÞ

× ðeiqðzgþzsÞÞD 0 0
1 ðk; zg; ks; zs;ωÞ

1

zs
: (B-10)

Now, if the receiver in the actual experiment is close to the free
surface (zg is small), then equation B-10 will be proportional to

1

2π

Z
dkD 0 0

1 ðkg; zg; k; zs;ωÞD 0 0
1 ðk; zg; ks; zs;ωÞ: (B-11)

Applying the inverse Fourier transform on kg and ks, we have

1

2π

Z
dkD 0 0

1 ðxg; k;ωÞD 0 0
1 ðk; xs;ωÞ: (B-12)

Expressing D 0 0
1 ðxg; k;ωÞ and D 0 0

1 ðk; xs;ωÞ using their Fourier
transforms****

1

2π

Z
dk

Z
dx 0D 0 0

1 ðxg;x 0;ωÞeikx
0
Z

dx 00D 0 0
1 ðx 0 0;xs;ωÞe−ikx

0 0
:

(B-13)

We rearrange the above equation

1

2π

Z
dx 0

Z
dx 0 0D 0 0

1 ðxg; x 0;ωÞD 0 0
1 ðx 0 0; xs;ωÞ

Z
dkeikðx 0−x 0 0Þ:

(B-14)

We have

1

2π

Z
dx 0

Z
dx 0 0D 0 0

1 ðxg;x 0;ωÞD 0 0
1 ðx 0 0;xs;ωÞ

Z
dkeikðx 0−x 0 0Þ

¼ 1

2π

Z
dx 0

Z
dx 0 0D 0 0

1 ðxg;x 0;ωÞD 0 0
1 ðx 0 0;xs;ωÞð2πδðx 0−x 0 0ÞÞ

¼
Z

dxD 0 0
1 ðxg;x;ωÞD 0 0

1 ðx;xs;ωÞ: (B-15)

We obtain the convolutional SRME free-surface-multiple prediction
equation. Hence, the industry-standard free-surface algorithm,
SRME, can be derived as an approximation to the ISS FSME algo-
rithm. The ISS FSME predicts the exact time and amplitude of all
free-surface multiples of different orders at all offsets. SRME pre-
dicts the approximate amplitude and phase of the free-surface multi-
ples at all offsets.
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